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Abstract. We investigate the effects of topological defects (dislocations) to the ground state of
the solid-on-solid (SOS) model on a simple cubic disordered substrate utilizing the min-cost-flow
algorithm from combinatorial optimization. The dislocations are found to destabilize and destroy
the elastic phase, particularly when the defects are placed only in partially optimized positions.
For multi-defect pairs their density decreases exponentially with the vortex core energy. Their
mean distance has a maximum depending on the vortex core energy and system size, which gives
a fractal dimension of .27 &+ 0.02. The maximal mean distances correspond to special vortex
core energies for which the scaling behaviour of the density of dislocations change from a pure
exponential decay to a stretched one. Furthermore, an extra introduced vortex pair is screened due
to the disorder-induced defects and its energy is linear in the vortex core energy.

1. Introduction

At low temperatures the physics of crystal surfaces on disordered substrates is dominated by
the randomness rather than thermal fluctuationg2 Hx 1)-dimensions this elastic surface is
expected to have a roughening phase transition at a critical tempeTatinoen a thermally
roughphase foIT > T; to asuper-roughphase fofl' < T, [1-3], corresponding to a height—
height correlation function lag) and log () respectively. The lo%r)-super-rough behaviour

was numerically confirmed at finite temperature via Monte Carlo simulations [4] as well as
in the limit of a vanishing temperature via exact ground state calculation using combinatorial
optimization methods [5-7].

In this paper, we study the stability of the low-temperature (glassy) phase of the solid-on-
solid model (SOS) on a disordered substrate [7—9] with respect to the formation of topological
point-like defects. We also consider the density of defects and the screening effect of pre-
existing pairs to an introduced extra pair and allow for a vortex core energy.

The SOS model on a disordered substrate is given by the uniformly distribultstrate
heightd; € [0, 1] and the integecrystal heightrn; on a simple cubid. x L aalatticeG with
periodic BC and lattice siteas schematically shown in figure 1. The= n; +d; denotes the
total surfaceheight at siteé and the SOS model Hamiltonian is defined by

H =Y (hi—h))? (1)
(i)

where the sum runs over all nearest-neighbour gaiis To calculate the ground state of the
SOS Hamiltonian (1) we introduce tiseystal height-differences:;; = n; — n; (integer) and
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Figure 1. Height profileh; = n; +d; in the (2 + 1) SOS model, wheré; € [0, 1] are the random
offsets of the disordered substrate anthe crystal heights (arbitrary integers) on the latticeisite

substrateheight-differencesl}; = d; — d; (¢ [-1, +1]) along the linksk = (i, j) on the dual
lattice G*. Thus we get the following SOS Hamiltonian for the dual space:

H({nph) =) (nf — dp)>. 2
k
The minimal (optimal) energy configuratidn; }min Will just be the closest integet; to d;
for all links & = (i, j). On the other hand, since the describe height-differences in the
scalar field given by the; their sum along any oriented cycle on the surface around bis
to be zero, i.e. the lattice divergencertif has to vanish for each site

(V-n%); =0. ®3)

Note thatn; can be considered to be a potential atjyl as its force field. Obviously, for

a typical disordered substrate the minimal configuratiefijmin violates the mass balance
constraint (3). Figure 2 shows an example of a disordered substrate with substrate height
d; =0.0,0.2,0.4and 0.6. Consider the differendgsacross the dashed line we haje= 0.6

and|d;| < 0.5 elsewhere. Consequently, the absolute minimum-energy configuration without
any balance constraintis givenay = 1 andn; = 0 respectively. With respect to the balance
constraint (3) the only feasible optimal solution (ground state) is a flat surface; i-e.0 for

all links k = (i, j). On the other hand, dislocations of Burgers chargeén be introduced

if one treats the height field; as a multi-valued function which may jump byalong lines

that connect two point defects (i.e. a dislocation pair) [10]. Therefore, for the given example
(figure 2) it should be clear that the minimal configurat{e:j}min (see above) is exactly the
optimal (i.e. ground state) configuration with one dislocation pair. One of the two defects has
aBurgers charge = +1 and the other one= —1. The pair is connected by a dislocation line
(dashed line in figure 2) along which one h&s= 1. This already demonstrates that due to

the disorder the presence of dislocations decreases the ground state energy and a proliferation
of defects appears. Alternatively, in [7] a dislocation pair (excited step) was introduced by
fixing the boundary to zero and one.

2. Defect pairs in the SOS model

The defect pairs in the disordered SOS model are source and sink nodes of stieagth +
—b, respectively, for the network flow field [8, 9], which otherwise fulfilgV - n*); =0, i.e.
we have to modify the mass balance constraint (3) as follows:

0 no dislocation at i
(V-n"); = . . ) 4)
+b dislocation at i.

Tt b = |b|, whereb is the Burgers vector.
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Figure 2. Example of a disordered substrate, heightsn a random-surface model with a single
dislocation pair connected along a straight line of gifdashed line). The optimal surface without
dislocations would be flat, i.@; = O for all sitesi; however, allowing dislocations would decrease
the ground state energy (see the text).

Thus the ground state problem is to minimize the Hamiltonian (2) subjected to the mass balance
constraint (4) which can be solved by the successive-shortest-path algorithm [6, 8, 9]. In the
following we concentrate on defect pairs with= +1.

The defect energW\E is the difference of the minimal energy configuratith and
withoutdislocations for each disorder realization, £ = E; — Eg. More precisely, for the
configurationwith N defect pairs of Burgers charge= +1 we introduce two extra nodes
andr with ny, = +N andn, = —N respectively and connect them via external edges or bonds
with particular sites of the lattice depending on the degree of optimization: (a) with two sites
separated by./2 (figure 3@)), (b) the source node with one sitand the sink node with the
sites on a circle of radius /2 around: (figure 3f)) and (c) both nodes with the whole lattice.
Case (a) corresponds tofized defect pair, (b) to gartially optimizedpair along a circle,
both separated by a distan£g2, and (c) to acompletely optimizegair with an arbitrary
separation. In all cases the energy costs for flow along these external edges are set to a positive
value in order to ensure the algorithm to find the optimal defect pair on the chosen sites. These
‘costs’ have no contribution to the ground state energy. In the casmibifpairswe always
use graphd). Here, the optimal numbey of defects in the system is gradually determined
starting with one pair¥ = 1) with a vortex core energyR. and checking whether there is
an energy gain or not. If yes, add a further pair (wiffy Pand repeat the procedure until there
is no energy gain from the difference of the ground state energy between two iterations.

3. Single-defect pair (V = 1)

We study the defect energyE and its probability distributio® (A E) on aL x L lattice with

L = 6,12, 24, 48, 96 and 192 and210°~10° samples for each size and consider the three
cases (a)—(c) (see above). With an increasing degree of optimization a negative defect energy
AE becomes more probable and its probability distributid E) differs more and more

from the Gaussian fit, figure 4. The resulting disorder-averaged defect emeRjy{ scales

as

In(L) fixed defect pair
[AE]gis ~ { —0.27(7) x In®?(L) partially optimized (5)
—0.73(8) x In¥?(L) completely optimized
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Figure 3. Graph of aL x L lattice with periodic BC for the implementatioa)(of onefixeddefect
pair and b) of a partially optimizedpair. Both are separated y/2. The energetic costs are
c(mp) = (nf — dj;)2 at the dual sit&d = (i, j). Dislocations are induced by two extra nodes
andz, which are connected with the possible positions of the defects (big dots).

and its related variance as

In(L) fixed defect pair
o(AE) ~ {1 In?3(L) partially optimized (6)
In¥2(L) completely optimized

where the exponents are approximations for the best data collapse. The defect energy indicates
that for the optimized cases dislocations can proliferate due to thermal fluctuations and melt
the elastic super-rough phase. Furthermore, for a growing degree of optimization the scaling
amplitude of A E]gis increases.

The mean length (mask);, of the line connecting the two defects scales with the system
size L according to the fractal dimension

d; = 1284002 @)

for the fixed and partially optimizedsituation. This value is close to the fractal dimension
of an optimal path in a disordered environment [#1§*P*" = 1.20+ 0.02 ind = 2), but
still significantly different from it. Although at first sight there might be similarities between
this problem and the situation considered here (at leadtded position of the defect pair)
there are differences that are significant enough (e.g. the underlying energy costs for the defect
situation are not uncorrelated) to put them both in different universality classes.

For thecompletely optimizedase figure 5 shows a probability distributiBii 5, ), which
behaves as

1 l
Pr(pr) ~ 7XP (%) . 8)

4. Multi-defect pairs (N > 1)

Next, we study the effect of a uniformly given vortex core enefgyto the system omulti-
defect pairs(N > 1) as a simplification of the real situation with a distribution®f As
shown in figure &4), the densityp of defects decays exponentially with an increasifygi.e.

p(Eo) ~ e*(Ec/Eo)”_ (g)
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Figure 4. Probability distribution? (A E) of alarge-scale topological excitation with a Gaussian fit
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Figure 5. Finite-size-scaling relation of the probability distributi®/p; ) of the mean distance
Ipr between two optimally placed dislocations for system gize 6, 12, 24, 48, 96 and 192. The
data collapse foP; (Ipz) ~ 1/L x p(IpL/L).
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Figure 6. (a) Density p of defects with respect to the vortex core enefgyfor different system
sizesL = 6-48 and 18 up to 1¢ samples. The log—lin plot indicates an exponential decay. of
Simultaneously, k) the mean distanch,, of all dislocation pairs versus the vortex core energy
E;. Comparing ) and p) one sees that the maximal lendgy, occurs at the cross-over energy
ET® (see the text).

For the Eg anda we can distinguish between two intervals &f which refer to a stretched
and a pure exponential decay, respectively. In detail we have the following values:

EC (S EO o

[0, oo 06+£015 075+0.2
[0, E™X(L)[ 0.45+003 1

The upper limitE,"®(L) corresponds to the maximal mean lentgh for each system size
L, cf figures 64) and p), and scales as

E. ™™~ (const. + 047 + 0.02) x In(L))%2. (10)
Moreover, we found the same scaling behaviour for the vanishing defect energyAlgisi=
0:

E.o ~ (const. +0.47 + 0.01) x In(L))%2. (11)
From the plot of the maximal mean length, (figure 6)) versus the system sizg, i.e.
Ipr(EM®) ~ L4/ the fractal dimensiod; is given by

dy =1.27+£0.07 (12)

which agrees (within error bars) with the value for the single line situation reported in
equation (7).
Finally, we focus on the effect of introducing artrafixed defect pair separated liy 2
to an already (completely) optimized configuration with a vortex core engggylhis extra
pair costs

whereE; denotes the ground state energyAb(pre-existing optimal) pairs ankl; the energy

for N + 1 optimally placed pairs, both for the same disorder configurdtign As plotted in
figure 7,A Esx is constant inL, but linear inE., i.e.

AEy (L) = (0.17+ 0.02) + (4.354 0.02) x Eq. (14)
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Figure 7. Defect energyA E of a single (introduced) defect pair versus the systembige = 6,
12, 24, 48, 96) in a systemith andwithoutan already optimal number of dislocations for different
vortex core energieke.

Thus, one obtains a screening effect of the defect—defect interaction due to disorder-induced
dislocations. In comparison, figure 7 also shows the case for a singleNpair {) without
pre-existing pairs as studied in section 3.

5. Related models

A similar picture of the effect of dislocations to a randomly pinned elastic media=aD were
found for other discrete models: thally-packed loop(FPL) model [12] and the matching
model [14], both on a bipartite hexagonal lattices with a linear energetic cost function and
periodic BC

In the case of a singliixed defect pair we found the same(ln) behaviour of the defect
energy as for the excitation step in [7,12], but got a smaller fractal dimedsiea 1.28(2)
ratherthanl; = 1.35(2) [7]. The disorder-induced dislocations turned out to destroy the quasi-
long-range order of the elastic phase due to a negative scaling behaviour of defect/efergy
with respect ta. for optimally placed defects, i.A E ~ —In*?(L), in good agreement with
the results of the FPL model [12]. When taking into account screening and a uniform vortex
core energyE. in addition to the energy balaneeF, one finds that the energetic coat&y of
an introduced fixed pair does not depend on the systenisias shown for the FPL [13] and
matching [14] model. In addition, we found for the disordered SOS model a linear dependence
of A Esx on the vortex core energy. (figure 7). One concludes that this extra pair is screened
by the pre-existing defect pairs. For the exponentially decay of depsifiythe dislocation
pairs we distinguished between (a) the whole range of the vortex core dneagy (b) arange
with an upper limitE"(L), for which (latter case) the mean defect lenfjth was found to
be maximal. Case (a) correspondsite= 1 andEy = 0.45(3) and the maximal lengtly;,
related to the cross-over energ#®(L) behaves a#,; ~ L4 with the fractal dimension
dy = 1.267(7). Both results were also found in [14]. For case (b) weaget 0.75 (close to
%) andEy ~ 0.6 in good agreement with [13].
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Finally, we relate the SOS model (1) to the continuum description of a randomly pinned
elastic medium on large length scales given bysime—Gordormodel Hamiltonian

H — / d’r [g(wm)z — wcok 27 (u(r) — d(r))):| (15)

whereK is the elastic constant amalir) a random field out of [0,1]. The first term represents
the elastic energ¥e and the second one the random pinning endigy. The model is known

to describe a weakly disturbed vortex lattice in a thin two-dimensional superconducting film
introduced by a parallel field [15-17]. Other experimental realizations are charge density
waves [18] and Wigner crystallization of electrons [19].

The relation to the SOS model is as follows: in the limit of an infinite coupling
strengthw — oo and T = O the sine—Gordonmodel maps onto a lattice SOS model
equation (1), as the cosine term of equation (15) forces the displacemeni @igldo be
u(r) = d(r) + n(r) [4,9, 21], wheren(r) is an integer. One can identify th&r) as the
continuous height field (r) of the SOS model.

The results of the analytical study of te;ne—Gordonmodel [12, 20, 22] are in good
agreement with our results, but only refer to the casdixeflandcompletely optimizegairs.
Furthermore, these studies allow another interpretation of the defect en&rgpnd density.

From the calculation of the elastic energy [23] and defect energi E [12, 20, 22] one gets
that for afixed pair the elastic energife; dominates the pinning ener@pin, i.e. AE ~ Eg,

and for thecompletely optimizegair the situation is vice versa, i.8E ~ Epi,. The resulting
scaling behaviour is found to b®E ~ In(L) andAE ~ —In¥2(L), respectively [12]. The
scaling behaviour of théxed dislocation pair in presence of pinning disorder is essentially
equivalent to the one of fixed defect pair at finite temperaturds without disorder, i.e.
AE ~In(L) ~ EN"(T).

The density of defects can be related to the length s&aleeyond which the dislocations
become unpaired [20] since far~ 0.6 the densityp, equation (9), shows the same scaling
behaviour agp in the case of low temperatures and large core enEggiye. E. > K In(&p).

For E. ~ 0 we found large densities and one is probably out of the regime given by
E: > KIn(&p). This would possibly explain the occurrence of the stretched exponential
behaviour close t&. ~ 0 as seen in figure &).

To summarize, we have studied the effect of dislocation pairs on the ground state properties
ofthe SOS model on adisordered substrate. For afixed position of the dislocation pair a distance
L apart we found that on average the defaagtsan energy proportional to lh, in agreement
with the findings for the energy costs for a steplike excitation step with fixed endpoints
reported earlier [7] and also in agreement with recent results for other two-dimensional lattice
models [12, 14]. On the other hand, if we optimize the position of the dislocation pair we
showed that igains energy, namely an amount proportional td Ih with an exponeni)
aroundg as predicted by scaling arguments and also observed in the FPL model [12]. When
introducing a penalty for the topological defects (i.e. a core energy) we showed that the density
of defects vanishes exponentially as a function of this core energy, which is in agreement with
the results for the FPL model [14]. Finally, we also demonstrated that a dislocation pair is
screened by the presence of other dislocations in the system.
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